
Smartphones as the keystone for leveraging the
diffusion of ITS applications
Sergio Martı́nez Tornell, Javier E. Meseguer, Jorge Zaldivar,

Carlos T. Calafate, Juan-Carlos Cano and Pietro Manzoni
Universitat Politècnica de València

Camino de Vera, s/n, 46022 Valencia, Spain
sermarto@upv.es, jmesegue@upvnet.upv.es, koke.zaldivar@gmail.com, {calafate, jucano, pmanzoni}@disca.upv.es

Manuel Fogue, Francisco J. Martinez
University of Zaragoza, Spain

{m.fogue, f.martinez}@unizar.es

Abstract—The increasing activity in the Intelligent Transporta-
tion Systems (ITS) area faces a strong limitation: the slow pace
at which the automotive industry is making cars ”smarter”.

On the contrary, the smartphone industry is advancing quickly.
Existing smartphones are equipped with multiple wireless inter-
faces and high computational power, being able to perform a wide
variety of tasks. By combining smartphones with existing vehicles
through an appropriate interface we are able to move closer to
the smart vehicle paradigm, offering the user new functionalities
and services when driving.

In this paper we review three different Android based applica-
tions, developed to evaluate the possibilities provided by the use of
smartphones for ITS. Moreover we analyzed the behavior of the
wireless channel and the GPS location service under different
conditions to assess the feasibility of our proposal under the
hardware constraints of the used devices.

I. INTRODUCTION

The integration of users, vehicles and cities requires a com-
mon agent that could act as the main conduit for information,
services, and connectivity. The way the market is developing,
smartphones could become this agent allowing the creation of
an integrated environment. According to many analysts there
are various reasons why the smartphone is key to telematics
and therefore more than an interim connectivity play. The
main reasons why are: (a) it’s cheaper for OEMs to leverage
smartphone development, (b) the car will not be the unique
“vehicle”, (c) smartphones contain your digital identity, and
finally (d) we “love” our gadgets.

According to the European Automobile Manufacturers As-
sociation [3], the average age of the car fleet in Europe is 8.7
years, and 34.5% of the automobile fleet in the EU are older
than 10 years. Taking these statistics into account, if manu-
facturers started to install specialized On Board Units (OBUs)
in every car right now, in the best case, it would take more
than 10 years to achieve a penetration rate of about 80%. In
addition, experience demostrates that only luxury cars tend to
incorporate these hi-tech devices as standard equipment. In our
opinion, traffic management and safety-related applications
cannot wait until then. Simultaneously, smartphones recently
reached a 50% of penetration in developed countries, and this
value is still growing. Smartphones are typically equipped

with several network interfaces: WiFi, cellular network, and
Bluetooth. From our point of view, smartphones offer an
opportunity for developers and Vehicular Ad-Hoc Networks
(VANETs), which can evolve from a pure ad-hoc network,
with its known limitations, to a heterogeneous and more
versatile network taking advantage of the possibilities offered
by other wireless network interfaces. In addition, the On
Board Diagnostics (OBD-II) [20] standard, available since
1994, has recently become an enabling technology for in-
vehicle applications due to the appearance of Bluetooth OBD-
II connectors [21]. These connectors enable a transparent
connectivity between the mobile device and the vehicle’s
Electronic Control Unit (ECU).

The range of possibilities that arise when combining the
car and the smartphone is endless, allowing, for example,
diagnosing the car via mobile devices which assume the tasks
that are typically performed by the On Board Unit (OBU) of
the vehicle, or sending the collected data to a platform where
diagnosis and vehicle maintenance can be done, detecting
possible failures automatically.

In this article we describe three solutions that exploits the
direct communication between smartphones through an ad-hoc
network to provide a better driving experience when integrated
together with a navigation software.

II. RELATED WORK

In [11] its authors demonstrated how sensors available in
smartphones can be used to prevent accidents in a proac-
tive manner, through the analysis of the data collected by
cameras, accelerometers and the Global Positioning System
(GPS) system. Furthermore, there are several Android based
applications [12] that try to make driving a better experience.
The best example is Waze [13], an application that exploits
the user collaboration through the cellular network. Another
example of the possibilities that smartphones and their multi-
interface schemes can offer to VANETs is Torque [14], an
application that can connect to the OBD-II [15] interface of the
vehicle to obtain real-time information about the current state
of the engine. Regarding navigation devices, we have found
different solutions that aim at improving the user experience



while driving and moving efficiently. Recently, navigation
devices manufacturers, like TomTom [9] or Garmin [10],
have presented their own real time assisted routing based on
online updates provided via a cellular network. According to
information made available at their websites, they combine
data obtained from the local authorities with data obtained
from each individual device. Their devices do not have any
wireless interface for ad-hoc communication, so they miss the
opportunity of real collaboration with neighboring vehicles.
Moreover, the updates via cellular network may present a high
delay.

III. THE OBD-II STANDARD

The On-board Diagnostic (OBD) standards were developed
in the USA to detect car engine problems that can provoke
an increase of the gas emission levels beyond acceptable
limits. To achieve this purpose, the system is constantly
monitoring the different elements related to gas emissions,
including engine management functions, being a powerful tool
to diagnose problems on vehicles electrical systems. When a
failure is detected, the system must store it in memory so that
technicians may analyze it later on. The first OBD standard,
known as OBD-I, defined only a few parameters to monitor,
and did not establish a specific emission level for vehicles.
Thus, failures resulted in just a visual warning to the driver and
the storage of the error. The second generation of OBD, known
as OBD-II (Figure 1), standardizes different elements such
as the connector used for diagnostic, the electrical signaling
protocols, and the message format. Additionally, it defines a
list of parameters that can be monitored, assigning a code to
each parameter. A detailed list of DTCs (Diagnostic Trouble
Codes) is also defined in the standard. Several operating
modes are defined by the OBD-II standard to allow for an
easier interaction with the system, and defining the desired
functionality. Most automobile manufacturers have introduced
additional operation modes that are specific to their vehicles,
thus offering a full control of the available functionality.
The European version of the OBD-II standard, known as
EOBD, is mandatory for all gasoline and diesel vehicles
since 2001 and 2003, respectively. Despite it introduces small
improvements, EOBD strongly resembles OBD-II, sharing the
same connectors and interfaces.

Although the physical interface is well defined, the commu-
nications protocol varies depending on the manufacturer. The
available protocols are: (i) SAE J1850 PWM (Pulse- Width
Modulation), (ii) SAE J1850 VPW (Variable Pulse Width),
(iii) ISO 9141-2, (iv) ISO 14230 KWP2000 (Keyword Protocol
2000), and (v) ISO 15765 CAN; these protocols present
significant differences between them in terms of the electrical
pin assignments. Notice that most vehicles implement only
one of these protocols. For instance, Chrysler uses the ISO
9141-2 protocol, General Motors uses SAE J1850 VPW, and
Ford uses SAE J1850 PWM.

Diagnostic Trouble Codes were standardized in document
ISO 15031-6, and allows engine technicians to easily deter-
mine why a vehicle is malfunctioning using generic scanners.

Fig. 1: Example of a) an in-vehicle OBD-II female connector,
and b) a Bluetooth-enabled OBD-II device with male connec-
tor..

The proposed format assigns alphanumeric codes to the dif-
ferent causes of failure, although extensions to the standard
are allowed to support manufacturer-specific failures.

The OBD system was designed to offer a flexible commu-
nications system. Message delivery among different devices
requires defining the type of message to be delivered, along
with the transmitter and the receiver devices. The adoption
of different message priorities is also supported in order to
make sure that critical information is processed first. However,
depending on the protocol used, the format of this message
may vary slightly. Notice that both frame formats allow up to
7 data bytes, and they include a checksum field in order to
detect any transmission errors.

IV. THE EMDR TRAFFIC ALERT APPLICATION

The eMDR Traffic Alert application exploits the direct
communication between smartphones through an ad-hoc net-
work to provide a better driving experience when integrated
together with a navigation software. The application imple-
ments our protocol “enhanced Message Dissemination based
on Roadmaps” (eMDR) [4] to inform its users about the
presence of an ambulance close to their route; allowing the
drivers to act in consequence, anticipating its actions.

We integrated our VANET application architecture with an
existing open source navigation software. Our main requisites
were: (i) to have a free map data source to avoid royalties
issues, (ii) to have an offline route calculation system, and
(iii) to present an easily expandable structure. With these
premises in mind, after scouting the Android market, we
chose OsmAnd [17], a navigation software that uses maps
and route layout information from OpenStreetMaps [18]. The
map rendering process in OsmAnd is composed by different
layers that are rendered sequentially. Therefore the different
applications can be programmed as a special layer that not
only draws new data on the map, but also communicates with
the dedicated protocol threads which use the socket API to
communicate with other vehicles. We have developed a class,
called ‘GeoHelper”, to simplify the use of geographical data



provided by the integrated GPS, and to deal with map issues
related with the navigation service. Summarizing, the OsmAnd
map layer calls the draw() of our new VANET App Layer,
which obtains the required info from the different protocol
threads, eMDR in this case. On the other side, the protocol
threads communicates with our GeoHelper class, which runs
under its own thread, to obtain geographical info.

eMDR uses location and street map information to facilitate
an efficient dissemination of warning messages in VANETs,
avoiding the well known broadcast storm problem and taking
into account the effects of buildings to avoid wasting trans-
missions. In this section we include a short description of the
behavior of eMDR, a more detailed description of eMDR can
be found in [4].

1) User Interface: As explained above, our application is
implemented as a new layer that adds information obtained
from the VANET to the map view in OsmAnd. Before imple-
menting our application we have also created a new interface
called GeoPluginLayer that offers a common structure to
child classes. This allows us to quickly implement different
protocols reusing common code. Figure 2a shows the interface
through which users will select the desired protocol, in our
case eMDR. Figure 2b shows our “Warning Ambulance Appli-
cation” running. We can see two idle neighbors represented by
green circles, and a neighbor in alarm mode, represented by an
ambulance icon; the orange line is the ambulance’s route, and
the blue line represents the vehicle programmed route. Both
the red button on the right and the route-shaped button on the
left, are used for testing purposes. The red button activates the
alarm mode and, if present, broadcasts the programed route; it
is supposed to be available only to authorized devices, such as
ambulances, police-cars, etc. The other one is used to select
between three forwarding modes: (i) normal forwarding, i.e.
following eMDR rules, (ii) unconditional forwarding, i.e. every
alarm message is rebroadcasted, and (iii) forwarding disabled,
i.e. no alarm message is rebroadcasted.

(a) Layer selection screen. (b) Application screenshot

Fig. 2: Different application screenshots.

2) eMDR Implementation: Following a divide and conquer
paradigm we have structured our implementation of enhanced
Message Dissemination based on Roadmaps (eMDR) in three
different classes: an upper class, called EmdrPluginLayer, that
handles onDraw() calls from the map and all user interface re-
lated events (buttons). It makes use of two privates threads that
implement the eMDR protocol, namely: EmdrPacketGenerator
and EmdrProtocol. The former is in charge of packet genera-
tion, while the latter is in charge of receiving, processing, and
forwarding the messages received from other nodes following
eMDR rules. Our eMDR protocol will send a beacon every
second, or warning messages instead when in alarm mode. In
addition, if a route is programmed, it will be added to the
warnings as an array of points.

3) GeoHelper Class: To simplify the management of geo-
graphical data we have developed a class called “GeoHelper”.
This class collects and processes data from files and from
the services provided by both OsmAnd and the Android
operating system (i.e. GPS, routing service, etc), offering
different methods to our application.

The most important method provided by our GeoHelper
class is the method getCurrentLocation(), which returns, an
estimated current location based on the last two updates
provided by the GPS interface and the direction of the current
road. The difference between the last two updates is used to
estimate the speed vector of the vehicle, if a getLocation() call
occurs between two consecutive updates; the current position
is estimated using the estimated speed vector and the last
known location. In the case of getLocationOnStreet() calls,
the estimated location is restricted to be on the closest road,
and the speed vector also lays on the current road.

Concerning the findRoute(location), we found that the time
required by OsmAnd to calculate a route between two loca-
tions was in the order of tens of seconds, and that this value
is strongly dependent on the number of possible routes. In
our opinion, these issues impede the usage of some routing
protocols that calculate the shortest route for every sent packet,
as in [19].

V. THE DRIVINGSTYLES APPLICATION

This application applies data mining techniques to generate
a classification of the driving styles of users based on the anal-
ysis of their mobility traces. Such classification is generated
taking into consideration the characteristics of each route, such
as whether it is urban, suburban or highway.

To achieve the overall objective, the system is structured
around the following four elements:

1) An application for Android based smartphones. Using an
OBD-II Bluetooth interface, the application collects in-
formation such as speed, acceleration, engine revolutions
per minute, throttle position, and the vehicle’s geographic
position, being the latter obtained by the GPS interface.
After gathering the information, the user uploads the route
data to the remote data center for analysis.

2) A data center with a web interface able to collect large
data sets sent by different users concurrently, and to



Fig. 3: Snapshots of the home screen and the application
running on a vehicle.

graphically display a summary of the most relevant
results. Our solution is based on open source software
tools such as Apache, PHP and Joomla.

3) A neural network, which must be trained using the most
representative route traces in order to correctly identify,
for each path segment, the driving style of the user, as
well as identify the segment profile: urban, suburban or
highway. We adopted the backpropagation algorithm [31],
which has proven to provide good results in classification
problems such as the one associated to this project.

4) Integration of the tuned neural networks in the data center
platform. The goal is to use neural networks to dynami-
cally and automatically analyze user data, allowing users
to find out their profiles as a driver, and thus promoting
a less aggressive and more ecological driving.

A. The Android application

The Android application (see figure 3) is a key ele-
ment of the system, proving connectivity to the vehicle
and to the DrivingStyles web platform. Currently, it can
be downloaded for free from the DrivingStyles website
http://www.drivingstyles.info, or from Google Play.

In order to adjust the functionality of our Android appli-
cation to the user requirements, several configuration options
must be defined related to user creation, connection options,
GPS activation, and sensor sampling. The available function-
alities are: User creation, Connection options, GPS Activation,
and Sensor sampling.

The main module of our application launches the back-
ground processes responsible for capturing data sent by the
OBD-II and the GPS interfaces, as well as the phone’s
accelerometer.

Besides showing the sensors we are monitoring, we can
perform several parallel actions without affecting the data
capture. Possible options are:

• Start and stop data capture of the Electronic Control Unit
(ECU), the mobile’s accelerometer, and the GPS.

• List the routes captured by the app.
• Show the current position of the vehicle on the map, as

well as the detailed route followed whenever an Internet
connection is available.

• Real time visualization of the speed, rpm, and accelera-
tion in a time window of 10 seconds.

1) Route Upload Module: The route upload module is
in charge of sending the users’ traces to the website data
center for further analysis. This module can be accessed either
from the historic stored routes, or immediately after stopping
the data capture. The information screen displays the header
information of the selected route such as: date of the captured
data, start time, finish time, and maximum speed.

This module includes a graphical interface for showing the
routes on a map, as well as the collected statistics. Addition-
ally, it also includes communication facilities for uploading
the collected routes to the data center.

Finally, the file received in the DrivingStyles server is stored
in the corresponding user directory, and also generates a record
in the database for every sample submitted for analysis.

2) Map Module and Graphical Information: These mod-
ules are in charge of displaying information relevant to the user
in the most convenient manner. The graphs can be displayed
in real-time or by selecting data from previously stored paths.
Depending on the device model, the user can also zoom in
and out to display all or part of the graph using the device’s
touch screen.

The charts that appear on screen are the acceleration, the
speed, and the revolutions per minute (rpm). We have chosen
these three parameters because they are the most relevant ones,
and are also the ones we have selected for training our neural
network (see figure 4).

The map module allows displaying the GPS position on the
map. GPS coordinates are drawn using the Google Maps APIs.
A green car icon indicates the beginning of the route, and a
red icon shows the current position of the vehicle. The path
is shown by using different colors depending on the vehicle’s
speed (see figure 4).

B. The DrivingStyles Web interface

The second main component of our architecture corresponds
to the data center and its web interface. For this endeavor we
have selected open source software such as Apache HTTP, and
Joomla as the content management system (CMS). We have
used a CMS, combined with the use of a resource wrapper,
which allows detach our system from the presentation layer,
thus focusing on the problem of driving styles characterization.
The URL of this module is http://www.drivingstyles.info.

Basically the data center provides functionality to work with
User, Routes and Statistics.

1) User: Once the user is logged in, he is asked to record
a number of important data, especially for future data mining
studies. The most relevant items are sex, age, and other details
concerning the vehicle used: car manufacturer, model, fuel
type, and the theoretical 0-100 acceleration (important to
normalize the user behavior in our study). Finally, a third
block allows drivers to indicate what they feel about their
own behavior behind the wheel, i.e., whether they perceive
themselves as aggressive, moderate, or quiet drivers.



Fig. 4: Snapshots of the acceleration, speed, rpm parameters
and map module.

2) Routes: In the Routes’ section, the users can access all
the routes they have uploaded. The first grid shows routes
that are in the database including the name, date, starting
time, ending time, samples sent, total time, average speed,
and kilometers travelled. Below the grid, the selected route is
shown in a map. The path varies its color depending on the
speed of the car (see figure 5).

3) Statistics: In addition, other graphs, not represented
here, will show the results that the neural network sends back,
including the driving styles and the route characteristics.

In the next section we provide more information about the
neural network we proposed for characterizing driver styles.

C. Neural Networks based data analysis

In our project, we face a classification problem: starting
from some input data, which in our case are the speed, the
acceleration, and the revolutions per minute of the engine
(rpm), we intend to obtain as output the type of road and the
driving style. After studying the different types of algorithms
available, we decide to choose backpropagation [31] since this

Fig. 5: Snapshot of a route map.

kind of algorithm provides very good results in classification
problems.

A data preprocessing stage is selected from all the possible
input variables of the neural network that we have considered
initially. From all the possible data, we keep a subset of these
variables. In practice, this subset is not the minimum one;
instead, it is a compromise between a manageable number (not
too large) of variables and an acceptable network performance.
In this project, after considering the many variables that can
be obtained from the Electronic Control Unit (ECU), we have
chosen to train the neural network using: a) the mean and
standard deviation of speed, b) the vehicle acceleration, and
c) the rpm. In all vehicles used for testing, these variables were
easily obtained, while other variables, such as the position of
the throttle, which would provide important information for
the neural network training, finally had to be rejected because
not all ECU manufacturers provide such information. The data
input of each parameter is normalized between 0 and 1; this
normalization should take into consideration the whole range
of possible values.

With the neural network implemented, every time a route
or route segment is selected, the system automatically returns
the type of road, and the associated driving style. The overall
behavior of each user is also obtained by evaluating all the
routes sent by the user.

VI. THE BBDROID APPLICATION

The final application is called BBDROID and is an ap-
plication that monitors the vehicle through an On Board
Diagnostics (OBD-II) interface, being able to detect accidents.
Our proposed application estimates the G force experienced
by the passengers in case of a frontal collision, which is
used together with airbag triggers to detect accidents. The
application reacts to positive detection by sending details about
the accident through either e-mail or SMS to pre-defined
destinations, immediately followed by an automatic phone call



to the emergency services. Experimental results using a real
vehicle show that the application is able to react to accident
events in less than 3 seconds, a very low time, validating the
feasibility of smartphone based solutions for improving safety
on the road.

Initially the smartphone connects to an OBD-II device via
Bluetooth to retrieve data from the vehicle’s bus. The informa-
tion gained, together with data from other sources (e.g. GPS
system) is packed and sent to an emergency services database
or to other third parties defined by the user if an accident is
detected. This procedure is followed by an automatic call to
an operator, which will send an ambulance or other rescue
services to the accident location. The application also offers
general purpose information to the driver, including gas levels,
detection of failures in mechanical elements, extensive engine
feedback data, etc.

Android-based smartphones typically include different wire-
less interfaces, such as Bluetooth, Wifi, GPS and 3G, making
them ideal for our purposes. In particular, our solution will rely
on the Bluetooth technology to establish a data link between
the smartphone and a Bluetooth-enabled OBDII interface. This
approach removes the need for any sort of cable, thus making
it more robust against car crashes.

Since a data communications channel between the smart-
phone and an online server is required, it can be established
using either the Wifi or the 3G interface. Typically, mobile
telephony services, such as voice calls and SMS generation,
can also be used. For instance, the system can be configured to
send an SMS to our family, establish a voice channel with the
emergency services, and send detailed accident information,
including impact speed and current GPS position, to a special
purpose server. This way, all the entities involved in the
process may obtain all the information considered relevant.

The basic startup process works as follows: first the appli-
cation checks whether Bluetooth is enabled, returning an error
otherwise; in a second step it attempts to contact the OBD-
II device defined. In case it is found, the different protocols
supported are checked to determine which one is valid for
the current vehicle. Finally, if bidirectional communication is
established successfully, the application will start the system
monitoring process. Since the most novel component of the
proposed application is automatic detection and reaction upon
accidents, we now address how accidents are handled.

The accident detection process, basically works as follows:
if either the airbag is triggered or the deceleration detected
is greater than 5 Gs, we consider that an accident occurred.
Notice that severe accidents are usually associated with forces
above 20 Gs, and death conditions take place in impacts above
50 Gs. To avoid false alarm situations, the user is given 1
minute to abort the actions that follow. In case the user does
not abort, the accident warning procedure acts by retrieving
GPS and accident details, which are automatically sent through
email and/or SMS to a pre-specified address. Afterward, an
automatic emergency call to the emergency services is made.
In case no data channel is available, the call takes place
immediately.

In addition to the accident detection system, the application
offers additional information to users. The first step is to
establish communication with the vehicle using a Bluetooth
connection to the OBD-II device. Once communication is
established, the user may select the sensors considered of
interest for monitoring, as shown in Figure 6 (left). The
monitored information is then shown in the application main
window, see Figure 6 (right), and refreshed periodically to
provide the user with a feedback about the vehicle in terms
of performance, problems detected, and other information of
interest.

(a) Route type. (b) Route behavior

Fig. 6: Snapshots of the proposed application: parameter
selection menu (left) and real-time parameter visualization
(right)..

VII. SMARTPHONE HARDWARE VALIDATION

We have designed a set of experiments to evaluate the
following smartphone hardware performance parameters: (i)
message reception probability when in Line Of Sight (LOS),
(ii) message reception probability when nodes are in different
streets, and (iii) GPS updates inter-arrival time. All the exper-
iments were performed in a real environment with the eMDR
Traffic Alert application; vehicles were parked in streets with
a typical traffic flow. Since all mobiles were inside vehicles,
the transmissions were also affected by different issues related
to adverse signal effects caused by the structure of the vehicle.

1) Message reception probability when in LOS: In this
experiment we placed two of the handsets in different cars;
then, using our application, sent a burst of 200 warning
messages and counted the number of messages successfully
received. We have executed two different experiments to
evaluate this metric. The first one was executed in a high
traffic density environment, and the second one was in a
low traffic density environment. To achieve comparable results
each experiment was repeated four times, therefore we have
represented the mean and the confidence interval at 95%.
Results, represented in figure 7, shows that, as expected, the
reception probability decreases when the distance increases.
Comparing both graphs, we can appreciate that the presence
or the absence of interferences due to traffic density can
highly influence the performance of VANET’s application in



smartphones, reducing the communication rate from 80 m to
merely 40 m, and increasing the variability of the results. Our
experiments have shown that the eMDR threshold distance (i.e.
the minimum distance at which a retransmission is worth),
is optimal when the reception probability at such distance is
of 40%. Therefore, we have chosen 60 m as the threshold
distance for our eMDR protocol.

2) Message reception probability when in N-LOS: In this
experiment the cars where located in perpendicular streets.
One of them was located 25 meters away from the intersection,
and the second vehicle was moving away from the intersection.
As expected, the moving car stopped receiving messages as
soon as it moved a few meters away from the intersection.
With these results in mind, we decided that the threshold
distance under eMDR to consider that a vehicle is “near to an
intersection” would be configured to 10 meters or less. Also,
experiments have shown that the best parameter to detect if a
vehicle is close to an intersection is the detection of neighbors
from different streets. This method avoids problems related to
the street layout representation format of OsmAnd.

3) GPS updates inter-arrival time: Another important issue
when checking the feasibility of our solution is the freshness
of the GPS data in smartphones. In the rest of our experiments
we collected around 12000 measurements for this metric. By
analyzing them, we found that the mean inter-arrival time for
GPS updates was 1.07 s, while the maximum value was of
15 s, and only in 1 % of the total test its value was different
from 1.0s. Although we have configured the GPS interface
to notify our application about location changes as soon as
possible, the minimum time between updates that the system
was able to provide was of 1.0 s. If we consider that, a
vehicle with a speed of 25 m/s, a maximum acceleration
of 0.8 m/s2, and a maximum deceleration of 4.5 m/s2 can
typically travel between 21.40 m and 25.40 m per second,
our position estimation system, which assumes a constant
direction and speed during the inter-update time, will introduce
a maximum error of 3.6 m due to mobility. We believe that
this value is small enough to be used in VANETs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120

Low Traffic Densitie
Hight Traffic Densitie

Fig. 7: Rx Probability vs Distance

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we presented an implementation of three ITS
services based on the use of smartphones. Our objective was
to validate the idea that the integration of users, vehicles and
cities requires a common agent that could act as the main
conduit for information, services, and connectivity. The way
the market is developing, smartphones could become this agent
allowing the creation of an integrated environment.

In the near future we will explore the possibilities that
emerge when evolving from pure 3G or WiFi connections to
ad-hoc (VANETs) network or even to heterogeneous and more
versatile network, like the Delay Tolerant Networks (DTN), by
taking particle retention to the combined use of the various
available network interfaces.

Although security issues are outside of the scope of this
paper, spoofing attacks, where a non-authorized entity sends
warning packets, could be avoided using an asymmetric keys
scheme to sign every warning packet sent by authorized
entities. We will carefully study this problem and its different
solutions in future work.

ACKNOWLEDGMENTS

This work was partially supported by the Ministerio
de Ciencia e Innovación, Spain, under Grant
TIN2011-27543-C03-01.

REFERENCES

[1] “European commission’s website for smartcities,” http://eu-
smartcities.eu/mobility transport, last visit Jul 2012.

[2] “Esafety website,”
http://ec.europa.eu/information society/activities/esafety/index en.htm,
last visit Jul 2012.

[3] “European automobile manufacturers association,”
http://www.acea.be/news/news detail/vehicles in use/,
last visit Jul 2012.

[4] F. J. Martinez, M. Fogue, M. Coll, J.-C. Cano, C. T. Calafate, and
P. Manzoni, “Evaluating the impact of a novel warning message dis-
semination scheme for vanets using real city maps,” in Proceedings
of the 9th IFIP TC 6 international conference on Networking, ser.
NETWORKING’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp.
265–276.

[5] L.-C. Tung and M. Gerla, “An efficient road-based directional broadcast
protocol for urban vanets,” in Vehicular Networking Conference (VNC),
2010 IEEE, dec. 2010, pp. 9 –16.

[6] R. Frank, E. Giordano, P. Cataldi, and M. Gerla, “TrafRoute: A different
approach to routing in vehicular networks,” in Wireless and Mobile
Computing, Networking and Communications (WiMob), 2010 IEEE 6th
International Conference on. IEEE, Oct. 2010, pp. 521–528.

[7] J. Eriksson, H. Balakrishnan, and S. Madden, “Cabernet: vehicular
content delivery using wifi,” in Proceedings of the 14th ACM
international conference on Mobile computing and networking, ser.
MobiCom ’08. New York, NY, USA: ACM, 2008, pp. 199–210.
[Online]. Available: http://doi.acm.org/10.1145/1409944.1409968

[8] M. Gerla, J.-T. Weng, E. Giordano, and G. Pau, “Vehicular testbeds;
validating models and protocols before large scale deployment,” in Com-
puting, Networking and Communications (ICNC), 2012 International
Conference on, 30 2012-feb. 2 2012, pp. 665 –669.

[9] “Tomtom,” http://www.tomtom.com/, last visit Jul 2012.
[10] “Garmin,” http://www.garmin.com/, last visit Jul 2012.
[11] A. Campbell and T. Choudhury, “From smart to cognitive phones,”

Pervasive Computing, IEEE, vol. 11, no. 3, pp. 7 –11, march 2012.
[12] “Google play,” https://play.google.com/store, last visit Jul 2012.
[13] “Waze,” http://www.waze.com/, last visit Jul 2012.
[14] “Torque,” http://torque-bhp.com/, last visit Jul 2012.



[15] International Organization for Standardization, “ISO 15765: Road vehi-
cles, Diagnostics on Controller Area Networks (CAN),” 2004.

[16] J. Gozalvez, “First google’s android phone launched [mobile radio],”
Vehicular Technology Magazine, IEEE, vol. 3, no. 4, pp. 3 –69, december
2008.

[17] “OsmAnd website,” http://www.osmand.net, last visit Jul 2012.
[18] “OpenStreetMap website,” http://www.openstreetmap.org, October

2012.
[19] X. Wang and C. Song, “Distributed Real-Time Data Traffic Statistics

Assisted Routing Protocol for Vehicular Networks,” in Parallel and Dis-
tributed Systems (ICPADS), 2010 IEEE 16th International Conference
on. IEEE, Dec. 2010, pp. 863–867.

[20] International Organization for Standardization, ”:1999: Road vehicles,
Diagnostic systems, Keyword Protocol 2000”, 1999.

[21] ELM327DS. OBD to RS232 Interpreter. Elm Electronics – Circuits for
the Hobbyist.

[22] U. Hernandez, A. Perallos, N. Sainz, and I. Angulo, ”Vehicle on board
platform: Communications test and prototyping,” in Intelligent Vehicles
Symposium (IV), 2010 IEEE, pp. 967 –972, 2010.

[23] Co Eco-Driving: Pilot Evaluation of Driving Behavior Changes among
U.S. Drivers.

[24] E.Erikcsson. ”Independent driving pattern factors and their influence on

fuel-use and exhaust emission factors” Transportation Research Part D:
Transport, 2001 – Elsevier, 325-345J.

[25] Johansson, H., Gustafsson, P., Henke, M., Rosengren, M., 2003. Impact
of EcoDriving on emissions. International Scientific Symposium on
Transport and Air Pollution, Avignon, France.

[26] M.-C. Chen, J.-L. Chen, and T.-W. Chang, ”Android/OSGi-based vehic-
ular network management system,” Elsevier Computer Communications,
vol. 34, no. 2, pp. 169 – 183, 2011

[27] Fogue, M. Garrido, P., Martinez, F.J., Cano, J., Calafate, C.T., Manzoni,
P. Automatic Accident Detection: Assistance Through Communication
Technologies and Vehicles.Vehicular Technology Magazine, IEEE, Sept.
2012.

[28] Zaldivar, J., Calafate, C.T., Cano, J.C., Manzoni, P., Providing accident
detection in vehicular networks through OBD-II devices and Android-
based smartphones. Local Computer Networks (LCN), 2011 IEEE 36th
Conference 4-7 Oct. 2011.

[29] JavaNNS, Java Neural Network Simulator, User Manual, Version 1.1
Igor Fischer, Fabian Hennecke, Christian Bannes, Andreas Zell.

[30] Haykin, S. (1994), Neural Networks: A Comprehen-sive Foundation,
NY: Macmillan, p. 2.

[31] Hecht-Nielsen, R., Theory of the backpropagation neural network -
Neural Networks, 1989. IJCNN., International Joint Conference.


